1,175 research outputs found

    Daemons and DAMA: Their Celestial-Mechanics Interrelations

    Get PDF
    The assumption of the capture by the Solar System of the electrically charged Planckian DM objects (daemons) from the galactic disk is confirmed not only by the St.Petersburg (SPb) experiments detecting particles with V<30 km/s. Here the daemon approach is analyzed considering the positive model independent result of the DAMA/NaI experiment. We explain the maximum in DAMA signals observed in the May-June period to be associated with the formation behind the Sun of a trail of daemons that the Sun captures into elongated orbits as it moves to the apex. The range of significant 2-6-keV DAMA signals fits well the iodine nuclei elastically knocked out of the NaI(Tl) scintillator by particles falling on the Earth with V=30-50 km/s from strongly elongated heliocentric orbits. The half-year periodicity of the slower daemons observed in SPb originates from the transfer of particles that are deflected through ~90 deg into near-Earth orbits each time the particles cross the outer reaches of the Sun which had captured them. Their multi-loop (cross-like) trajectories traverse many times the Earth's orbit in March and September, which increases the probability for the particles to enter near-Earth orbits during this time. Corroboration of celestial mechanics calculations with observations yields ~1e-19 cm2 for the cross section of daemon interaction with the solar matter.Comment: 12 pages including 5 figure

    10 GeV dark matter candidates and cosmic-ray antiprotons

    Full text link
    Recent measurements performed with some direct dark matter detection experiments, e.g. CDMS-II and CoGENT (after DAMA/LIBRA), have unveiled a few events compatible with weakly interacting massive particles. The preferred mass range is around 10 GeV, with a quite large spin-independent cross section of 104310^{-43}-1041cm210^{-41}\,{\rm cm^2}. In this paper, we recall that a light dark matter particle with dominant couplings to quarks should also generate cosmic-ray antiprotons. Taking advantage of recent works constraining the Galactic dark matter mass profile on the one hand and on cosmic-ray propagation on the other hand, we point out that considering a thermal annihilation cross section for such low mass candidates very likely results in an antiproton flux in tension with the current data, which should be taken into account in subsequent studies.Comment: 4 pages, 2 figures. V2: minor changes to match the published versio

    The Poker Face of Inelastic Dark Matter: Prospects at Upcoming Direct Detection Experiments

    Full text link
    The XENON100 and CRESST experiments will directly test the inelastic dark matter explanation for DAMA's 8.9? sigma anomaly. This article discusses how predictions for direct detection experiments depend on uncertainties in quenching factor measurements, the dark matter interaction with the Standard Model and the halo velocity distribution. When these uncertainties are accounted for, an order of magnitude variation is found in the number of expected events at CRESST and XENON100.Comment: 5 pages, 3 figure

    The spectroscopic evolution of the symbiotic star AG Draconis. I.The O VI Raman, Balmer, and helium emission line variations during the outburst of 2006-2008

    Full text link
    AG Dra is one of a small group of low metallicity S-type symbiotic binaries with K-type giants that undergoes occasional short-term outbursts of unknown origin. Our aim is to study the behavior of the white dwarf during an outburst using the optical Raman lines and other emission features in the red giant wind. The goal is to determine changes in the envelope and the wind of the gainer in this system during a major outburst event and to study the coupling between the UV and optical during a major outburst. Using medium and high resolution groundbased optical spectra and comparisons with archival FUSEFUSE and HST/STISHST/STIS spectra, we study the evolution of the Raman O VI features and the Balmer, He I, and He II lines during the outburst from 2006 Sept. through 2007 May and include more recent observations (2009) to study the subsequent evolution of the source. The O VI Raman features disappeared completely at the peak of the major outburst and the subsequent variation differs substantially from that reported during the previous decade. The He I and He II lines, and the Balmer lines, vary in phase with the Raman features but there is a double-valuedness to the He I 6678, 7065 relative to the O VI Raman 6825\AA\ variations in the period between 2006-2008 that has not been previously reported. The variations in the Raman feature ratio through the outburst interval are consistent with the disappearance of the O VI FUV resonance wind lines from the white dwarf and of the surrounding O+5^{+5} ionized region within the red giant wind provoked by the expansion and cooling of the white dwarf photosphere.Comment: 10 pages, 15 figs. A&A (in press, accepted for publication 23/11/2009

    Detection of delta Scuti-like pulsation in H254, a pre-main sequence F-type star in IC 348

    Full text link
    We present time series observations of intermediate mass PMS stars belonging to the young star cluster IC 348. The new data reveal that a young member of the cluster, H254, undergoes periodic light variations with delta Scuti-like characteristics. This occurrence provides an unambiguous evidence confirming the prediction that intermediate-mass pre-main sequence (PMS) stars should experience this transient instability during their approach to the main-sequence. On the basis of the measured frequency f=7.406 c/d, we are able to constrain the intrinsic stellar parameters of H254 by means of linear, non adiabatic, radial pulsation models. The range of the resulting luminosity and effective temperature permitted by the models is narrower than the observational values. In particular, the pulsation analysis allows to derive an independent estimate of the distance to IC 348 of about 320 pc. Further observations could either confirm the monoperiodic nature of H254 or reveal the presence of other frequencies.Comment: 7 pages, including 7 postscript figures, accepted for publication on A&

    Interpreting the recent results on direct search for dark matter particles in terms of relic neutralino

    Full text link
    The most recent results from direct searches for dark matter particles in the galactic halo are examined in terms of an effective Minimal Supersymmetric extension of the Standard Model at the electroweak scale without gaugino masses unification. We show that the annual modulation effect at 8.2 σ\sigma C.L. recently presented by the DAMA Collaboration, as the result of a combined analysis of the DAMA/NaI and the DAMA/LIBRA experiments for a total exposure of 0.82 ton yr, fits remarkably well with what expected for relic neutralinos for a wide variety of WIMP distribution functions. Bounds derivable from other measurements of direct searches for dark matter particles are analyzed. We stress the role played by the uncertainties affecting the neutralino--quark couplings arising from the involved hadronic quantities. We also examine how present data on cosmic antiprotons can help in constraining the neutralino configurations selected by the DAMA effect, in connection with the values of the astrophysical parameters. Perspectives for measurement of antideuterons possibly produced in the galactic halo by self--annihilation of neutralinos belonging to the DAMA configurations are examined. Finally, we discuss how findings at LHC would impact on these issues.Comment: 18 pages, 10 figures a few minor comments and two references adde

    Long-Range Forces in Direct Dark Matter Searches

    Get PDF
    We discuss the positive indications of a possible dark matter signal in direct detection experiments in terms of a mechanism of interaction between the dark matter particle and the nuclei occurring via the exchange of a light mediator, resulting in a long-range interaction. We analyze the annual modulation results observed by the DAMA and CoGeNT experiments and the observed excess of events of CRESST. In our analysis, we discuss the relevance of uncertainties related to the velocity distribution of galactic dark matter and to the channeling effect in NaI. We find that a long-range force is a viable mechanism, which can provide full agreement between the reconstructed dark matter properties from the various experimental data sets, especially for masses of the light mediator in the 10-30 MeV range and a light dark matter with a mass around 10 GeV. The relevant bounds on the light mediator mass and scattering cross section are then derived, should the annual modulation effects be due to this class of long-range forces.Comment: 22 pages, 14 figures. v2: Matches version published on Phys.Rev.D; analysis of CRESST to match the recent release of the new data updated, discussion on astrophysical constraints on self-interacting dark matter added, some typos corrected and some references added, conclusions unchanged. v3: Few typos correcte

    Possible implications of the channeling effect in NaI(Tl) crystals

    Get PDF
    The channeling effect of low energy ions along the crystallographic axes and planes of NaI(Tl) crystals is discussed in the framework of corollary investigations on WIMP Dark Matter candidates. In fact, the modeling of this existing effect implies a more complex evaluation of the luminosity yield for low energy recoiling Na and I ions. In the present paper related phenomenological arguments are developed and possible implications are discussed at some extent.Comment: 16 pages, 10 figures, preprint ROM2F/2007/15, submitted for publicatio

    SUSY Dark Matter in the Universe- Theoretical Direct Detection Rates

    Full text link
    Exotic dark matter together with the vacuum energy or cosmological constant seem to dominate in the Universe. An even higher density of such matter seems to be gravitationally trapped in the Galaxy. Thus its direct detection is central to particle physics and cosmology. Current supersymmetric models provide a natural dark matter candidate which is the lightest supersymmetric particle (LSP). Such models combined with fairly well understood physics like the quark substructure of the nucleon and the nuclear structure (form factor and/or spin response function), permit the evaluation of the event rate for LSP-nucleus elastic scattering. The thus obtained event rates are, however, very low or even undetectable. So it is imperative to exploit the modulation effect, i.e. the dependence of the event rate on the earth's annual motion. Also it is useful to consider the directional rate, i.e its dependence on the direction of the recoiling nucleus. In this paper we study such a modulation effect both in non directional and directional experiments. We calculate both the differential and the total rates using both isothermal, symmetric as well as only axially asymmetric, and non isothermal, due to caustic rings, velocity distributions. We find that in the symmetric case the modulation amplitude is small. The same is true for the case of caustic rings. The inclusion of asymmetry, with a realistic enhanced velocity dispersion in the galactocentric direction, yields an enhanced modulation effect, especially in directional experiments.Comment: 17 LATEX pages, 1 table and 6 ps figures include
    corecore